Computing Technologies Research Laboratory    |   UCLA Campus    |   David Geffen School of Medicine

Faculty DataBase - FDB5

Begin main content

Stanley Osher, Ph.D.

   
Professor, Mathematics
Member, California NanoSystems Institute

Education:
Degrees:
Ph.D., New York University, 1966

Honors and Awards:
Nanjing University, Concurrent Professor
Society of Industrial and Applied Mathematics, Ralph E. Kleinman Award
2005 - US National Academy of Sciences, US National Academy of Sciences Electee

Professional Societies:
Society for Industrial and Applied Mathematics
American Mathematical Society

Contact Information:
Email Address: sjo@math.ucla.edu
Work Address: UCLA
Department of Mathematics
Box 951555
Los Angeles, CA 90095
UNITED STATES
Home Page: http://www.math.ucla.edu/~sjo/
Fax Number: (310) 206-2679
Office Phone Number: 310-825-4701
Work Phone Number: (310) 825-1758
(310) 825-9036 Assistant's phone number

Selected Publications:

Shi JN, Yin WT, Osher S, Sajda P, A Fast Hybrid Algorithm for Large-Scale l(1)-Regularized Logistic Regression, Journal of Machine Learning Research, 2010, 11, 713-41.
Bin Dong; Aichi Chien; Zuowei Shen; Osher, S., A new multiscale representation for shapes and its application to blood vessel recovery, SIAM Journal on Scientific Computing, 2010, 32 (4), 1724-39.
Yu Mao, Bin Dong, and Stanley Osher, A nonlinear PDE-based method for sparse deconvolution, Multiscale Model. Simul, 2010, 8 (3), 965-76.
Xiaoqun Zhang; Burger, M.; Bresson, X.; Osher, S., Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction, SIAM Journal on Imaging Sciences, 2010, 3 (3), 253-76.
Mao Y, Fahimian B, Osher S, Miao J, Development and Optimization of Regularized Tomographic Reconstruction Algorithms Utilizing Equally-Sloped Tomography, IEEE Trans Image Process, 2010, 19 (5), 1259-1268.
Osher S, Mao Y, Dong B, Yin WT, FAST LINEARIZED BREGMAN ITERATION FOR COMPRESSIVE SENSING AND SPARSE DENOISING, COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (1), 93-111.
Tom Goldstein, Xavier Bresson, Stanley Osher , Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction, Journal of Scientific Computing, 2010, 45 (1-3), 272-93.
Lou YF, Zhang XQ, Osher S, Bertozzi A, Image Recovery via Nonlocal Operators, JOURNAL OF SCIENTIFIC COMPUTING , 2010, 42 (2), 185-97.
Dong B, Chien AC, Mao Y, Ye JA, Vinuela F, Osher S, Level Set Based Brain Aneurysm Capturing In 3D, Inverse Problems and Imaging, 2010, 4 (2), 241-255.
Yanovsky I, Leow AD, Lee S, Osher SJ, Thompson PM., Comparing registration methods for mapping brain change using tensor-based morphometry, Med Image Anal, 2009, 13 (5), 679-700.
Joshi SH, Marquina A, Osher SJ, Dinov I, Van Horn JD, Toga AW, Edge-Enhanced Image Reconstruction Using (TV) Total Variation and Bregman Refinement, Lect Notes Comput Sci, 2009, 5567 (2009), 389-400.
Kao, C. Y. Osher, S. Qian, J. L., Legendre-transform-based fast sweeping methods for static Hamilton-Jacobi equations on triangulated meshes, Journal of Computational Physics, 2008, 227 (24), 10209-10225.
Dong, B. Ye, J. Osher, S. Dinov, I., Level Set Based Nonlocal Surface Restoration, Multiscale Modeling & Simulation, 2008, 7 (2), 589-598.
Dong B, Chien A, Mao Y, Ye J, Osher S., Level set based surface capturing in 3D medical images, Med Image Comput Comput Assist Interv, 2008, 11 (Pt. 1), 162-9.
Gilboa, G. Osher, S., Nonlocal Operators with Applications to Image Processing, Multiscale Modeling & Simulation, 2008, 7 (3), 1005-1028.
Kang, M. Merriman, B. Osher, S., Numerical simulations for the motion of soap bubbles using level set methods, Computers & Fluids, 2008, 37 (5), 524-535.
Osher, S., Special issue on level set methods - Preface, Journal of Scientific Computing, 2008, 35 (2-3), 75-76.
He, L. Kao, C. Y. Osher, S., Incorporating topological derivatives into shape derivatives based level set methods, Journal of Computational Physics, 2007, 225 (1), 891-909.
Yin, W. T. Goldfarb, D. Osher, S., A comparison of three total variation based texture extraction models, Journal of Visual Communication and Image Representation, 2007, 18 (3), 240-252.
Shi, Y. G. Thompson, P. M. Dinov, I. Osher, S. Toga, A. W., Direct cortical mapping via solving partial differential equations on implicit surfaces, Medical Image Analysis, 2007, 11 (3), 207-223.
Bresson, X. Esedoglu, S. Vandergheynst, P. Thiran, J. P. Osher, S., Fast global minimization of the active Contour/Snake model, Journal of Mathematical Imaging and Vision, 2007, 28 (2), 151-167.
Burger, M. Frick, K. Osher, S. Scherzer, O., Inverse total variation flow, Multiscale Modeling & Simulation, 2007, 6 (2), 366-395.
Xu, J. J. Osher, S., Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising, IEEE Transactions on Image Processing, 2007, 16 (2), 534-544.
Kang, M. Shim, H. Osher, S., Level set based simulations of two-phase oil-water flows in pipes, Journal of Scientific Computing, 2007, 31 (1-2), 153-184.
Gilboa, G. Osher, S., Nonlocal linear image regularization and supervised segmentation, Multiscale Modeling & Simulation, 2007, 6 (2), 595-630.
Yin, W. Goldfarb, D. Osher, S., The total variation regularized L-1 model for multiscale decomposition, Multiscale Modeling & Simulation, 2007, 6 (1), 190-211.
Kindermann, S. Osher, S. Xu, J. J., Denoising by BV-duality, Journal of Scientific Computing, 2006, 28 (2-3), 411-444.
Burger, M. Gilboa, G. Osher, S. Xu, J. J., Nonlinear inverse scale space methods, Communications in Mathematical Sciences, 2006, 4 (1), 179-212.
Losasso, F. Fedkiw, R. Osher, S., Spatially adaptive techniques for level set methods and incompressible flow, Computers & Fluids, 2006, 35 (10), 995-1010.
Aujol, J. F. Gilboa, G. Chan, T. Osher, S., Structure-texture image decomposition - Modeling, algorithms, and parameter selection, International Journal of Computer Vision, 2006, 67 (1), 111-136.
Jin S, Liu HL, Osher S, et al., Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems, Journal of Computational Physics, 2005, 210 (2), 497-518.
Kadioglu SY, Sussman M, Osher S, et al., A second order primitive preconditioner for solving all speed multi-phase flows, Journal of Computational Physics, 2005, 209 (2), 477-503.
Kao CY, Osher S, Yablonovitch E, Maximizing band gaps in two-dimensional photonic crystals by using level set methods, Applied Physics B: Lasers and Optics, 2005, 81 (2-3), 235-244.
Osher S, Burger M, Goldfarb D, et al., An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul, 2005, 4 (2), 460-489.
Kindermann S, Osher S, Jones PW, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul, 2005, 4 (4), 1091-1115.
Kao CY, Osher S, Tsai YH, Fast sweeping methods for static Hamilton-Jacobi equations, Siam Journal on Numerical Analysis, 2005, 42 (6), 2612-2632.
Leung SY, Osher S, Global minimization of the active contour model with TV-inpainting and two-phase denoising, Lecture Notes in Computer Science: Variational, Geometric, and Level Set Methods in Computer Vision, 2005, 3752, 149-160.
Yin WT, Goldfarb D, Osher S, Image cartoon-texture decomposition and feature selection using the total variation regularized L-1 functional, Lecture Notes in Computer Science: Variational, Geometric, and Level Set Methods in Computer Vision, 2005, 3752, 73-84.
Burger M, Osher S, Xu JJ, et al., Nonlinear inverse scale space methods for image restoration, Lecture Notes in Computer Science: Variational, Geometric, and Level Set Methods in Computer Vision, 2005, 3752, 25-36.
Scherzer O, Yin WT, Osher S, Slope and G-sets characterization of set-valued functions and applications to non-differentiable optimization problems, COMM. MATH. SCI, 2005, 3 (4), 479-492.
Aujol JF, Gilboa G, Chan T, et al., Structure-texture decomposition by a TV-Gabor model, Lecture Notes in Computer Science: Variational, Geometric, and Level Set Methods in Computer Vision, 2005, 3752, 85-96.
Jin S, Liu HL, Osher S, et al., Computing multivalued physical observables for the semiclassical limit of the Schrodinger equation, Journal of Computational Physics , 2005, 205 (1), 222-241.
Tsai, Y. H. R. Cheng, L. T. Osher, S. Burchard, P. Sapiro, G., Visibility and its dynamics in a PDE based implicit framework, Journal of Computational Physics, 2004, 199 (1), 260-290.
Cecil, T. Osher, S. Vese, L., Numerical methods for minimization problems constrained to S-1 and S-2, Journal of Computational Physics, 2004, 198 (2), 567-579.
Burger, M. Osher, S., Convergence rates of convex variational regularization, Inverse Problems, 2004, 20 (5), 1411-1421.
Lysaker, M. Osher, S. Tai, X. C., Noise removal using smoothed normals and surface fitting, Ieee Transactions on Image Processing, 2004, 13 (10), 1345-1357.
Kao, C. Y. Osher, S. Qian, J. L., Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations, Journal of Computational Physics, 2004, 196 (1), 367-391.
Cecil, T. Qian, J. L. Osher, S., Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions, Journal of Computational Physics, 2004, 196 (1), 327-347.
Memoli, F. Sapiro, G. Osher, S., Solving variational problems and partial differential equations mapping into general target manifolds, Journal of Computational Physics, 2004, 195 (1), 263-292.
Gibou, F. Fedkiw, R. Caflisch, R. Osher, S., A level set approach for the numerical simulation of dendritic growth, Journal of Scientific Computing, 2003, 19 (1-3), 183-199.
Qian, J. L. Cheng, L. T. Osher, S., A level set-based Eulerian approach for anisotropic wave propagation, Wave Motion, 2003, 37 (4), 365-379.
Tsai, Y. H. R. Cheng, L. T. Osher, S. Zhao, H. K., Fast sweeping algorithms for a class of Hamilton-Jacobi equations, Siam Journal on Numerical Analysis, 2003, 41 (2), 673-694.
Tasdizen, T. Whitaker, R. Burchard, P. Osher, S., Geometric surface processing via normal maps, ACM Transactions on Graphics, 2003, 22 (4), 1012-1033.
Nishimura, I. Garrell, R. L. Hedrick, M. Iida, K. Osher, S. Wu, B. , Precursor tissue analogs as a tissue-engineering strategy, Tissue Eng, 2003, 9 Suppl 1, S77-89.
Bertalmio, M. Vese, L. Sapiro, G. Osher, S., Simultaneous structure and texture image inpainting, Ieee Transactions on Image Processing, 2003, 12 (8), 882-889.
Osher, S. Cheng, L. T. Kang, M. Shim, Y. Tsai, Y. H., Geometric optics in a phase-space-based level set and Eulerian framework, Journal of Computational Physics, 2002, 179 (2), 622-648.
Fedkiw, R. Liu, X. D. Osher, S., A general technique for eliminating spurious oscillations in conservative schemes for multiphase and multispecies Euler equations, International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3 (2), 99-105.
Cheng, L. T. Burchard, P. Merriman, B. Osher, S., Motion of curves constrained on surfaces using a level-set approach, Journal of Computational Physics, 2002, 175 (2), 604-644.
Burchard, P. Cheng, L. T. Merriman, B. Osher, S., Motion of curves in three spatial dimensions using a level set approach, Journal of Computational Physics, 2001, 170 (2), 720-741.
Chan, T. F. Osher, S. Shen, J. H., The digital TV filter and nonlinear denoising, Ieee Transactions on Image Processing, 2001, 10 (2), 231-241.
Osher, S. Fedkiw, R. P., Level set methods: An overview and some recent results, Journal of Computational Physics, 2001, 169 (2), 463-502.
Chen, S. Merriman, B. Kang, M. Caflisch, R. E. Ratsch, C. Cheng, L. T. Gyure, M. Fedkiw, R. P. Anderson, C. Osher, S., A level set method for thin film epitaxial growth, Journal of Computational Physics, 2001, 167 (2), 475-500.
Ruuth, S. J. Merriman, B. Osher, S., A fixed grid method for capturing the motion of self-intersecting wavefronts and related PDEs, Journal of Computational Physics, 2000, 163 (1), 1-21.
Marquina, A. Osher, S., Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal, Siam Journal on Scientific Computing, 2000, 22 (2), 387-405.
Liao, G. J. Liu, F. de la Pena, G. C. Peng, D. P. Osher, S., Level-set-based deformation methods for adaptive grids, Journal of Computational Physics, 2000, 159 (1), 103-122.
Fedkiw, R. P. Merriman, B. Osher, S., Simplified discretization of systems of hyperbolic conservation laws containing advection equations, Journal of Computational Physics, 2000, 157 (1), 302-326.